NOVELTIES, ORDERING CODE

Novelties

- F3w contains 2 frequency relays with **programmable hysterese**.
- Frequency hysterese means a reliable operation and improved noise immunity;
- Asymmetry of three-phase system is analyzed by measuring the zero sequence voltage component. Its average is observed in a constant time window, to determine a tendency of declination of the three-phase voltage system.
- Average of Maximum Voltage is observed over a ten minute time window, to determine trend inclination of the Three-phase Voltage system, enabling the intime intervention, in a case of danger.

Ordering code F3W-50Hz-3x230V

APPLICATION, FUNCTION, FEATURES

Application

- · Solar power plant,
- Wind power plant or
- Private thermal or water facilities, to operate with public electro distribution grid.
- Private power plant to operate independently of Distribution Public Network in the Island ?mode.

Function

- over-voltage
- under-voltage
- average voltage maximum supervision
- phase asymmetry supervision
- over frequency
- under frequency

Features

- New design in Combiflex mechanical system;
- Surface or rail mounting; Transparent cover, ready for safety plumb-sealing;
- Fast response to pre-set limit exceeding;
- Self powering for autonomy supply is taken from 2 phases;
- Self power indicator lit, if at least one phase provides sufficient supply.
- Settings in accordance to present EU prescription;
- Indication of present status by LED lamps, settled in the cross-window matrix;

SETTINGS AND INDICATIONS

Maximum Average Asymmetry setting, estimated during 5 minutes period.

Single turn knob (0 - 270)°, range (10 to 80)% **U**n.

Ton set to 30s
Turn on time
trimmed to 30s

*U*min set to ▶ 80%*U*n Minimum Voltage limit reach down to 70%*U*n.

Yellow lamp indicating, that Average Asymmetry, inside estimated time period, exceeds the set Limit.

Red Lamp indicating, that the frequency drop below the limit (*f* < *fmin*).

Green O.K. Lamp indicates, that it passed more than *Ton*, since all measurements are inside set limits.

Red Lamp indicating, that the Voltage dropped below the limit (*U* < *U*min), at least in one phase. Maximum Average Voltage setting, averaging during 10 minutes period.

Single turn knob(0 - 270)°, ofers a setting range (108 to 116)% *Un*.

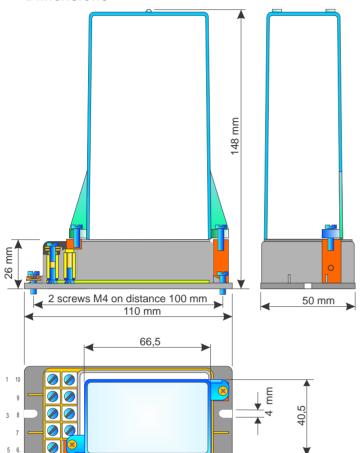
*U*max set to ► 115% *U*n Maximum Voltage limit reach up to...120% *U*n.

Red Lamp displays that, phase Voltage exceeded the limit (*U* > *Umax*), at least in one phase.

Yellow lamp is showing, that Average Maximum Voltage, inside 10minute interval, exceeds the set Limit.

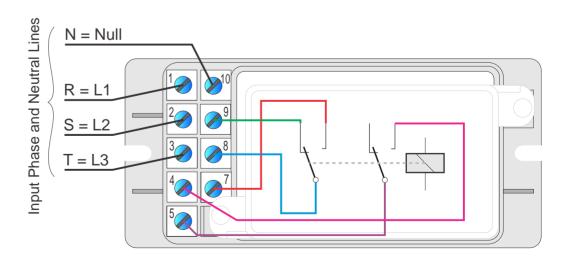
Red Lamp shows, that the frequency exceeded the upper limit $(f > f_{max})$.

Blue Lamp lit ON means, that the power supply is ready and sufficient for all functions.


The producer reserves the right to modify data and design in the light of future progress.

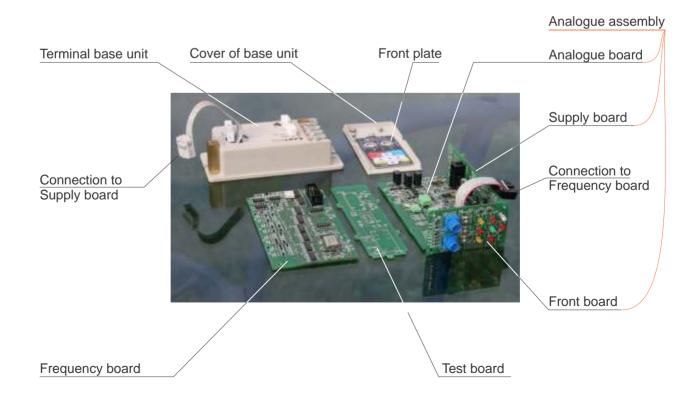
TECHNICAL DATA

						ı	TEOMINICAL DATE
	Parameter		Min.	Nom.	Мах.	Unit	Conditions @ TAmb = 25°C
	Nominal phase voltage* Nominal frequency**	U n f n		230 50		V Hz	Note: * <i>Un</i> on request: 100V, 110V; ** <i>fn</i> on request: 60Hz
Frequency relays	Frequency relays Under-frequency High Limit Under-frequency Low Limit Over-frequency High Limit Over-frequency Low Limit	fu = fuH fu = fuL fo = foH fo = foH		48,0 47,5 50,20 50,15		Hz Hz Hz Hz	Both limits set by producer; Both limits set by producer;
	Programmable increment Min. nominal increment frequency accuracy Hysteresis:	D P =1/D f D f n D f u; D f o	10 25	25 2 0,004	5 0,01	ms mHz mHz % mHz	@ fset = 50Hz; T _{Amb} =(5°/45°C); Dfu =(fu1-fu0); Dfo =(fo1-fo0);
	Time delay for Over- and for Under- -frequency relay	T d	160	200	240	ms	
	reset time	T rst			17	ms	
	Over-voltage relay limit Setting range	$oldsymbol{U}$ max	108	264,5	120	V % <i>U</i> n	115% <i>Un</i> , set by producer;
ays	Under-voltage relay limit Setting range	$oldsymbol{U}$ min	70	184	90	∨ % U n	80% U n, set by producer;
age rel	Repetition accuracy Reset Ratio (pick-up\drop-out)			1 99	2 97	% U n % U n	Knod setting angle (0-270)°
3-phase Voltage relays	Max-Voltage Average Setting range Averaing Time Constante	Mx-Avrg RC(Avrg)	106	600	116	% U n	Setting by the single turn scale potentiometer on a front plate;
	Max-Asymmetry Setting range Integrating Time Constate	Mx-Asy RC(Asy)	40	300	80	% U n S	
	Repetition accuracy			2	5	% U n	
	Resistance "Line to Null"	RLN		1		М	Each phase Line to Null
	Delay of Output Relay Trimmer Scale range	TON	20		50	s	(from O.K. condition till output contacts switch over);
	Prescribed setting Repetition accuracy Reset Time			30 1	2 25	s % ms	set by producer; of set value;
vering	Self-powering Self-powering indicator		160 69	400	480 60	V % <i>U</i> n % <i>U</i> n	supplied from inter-phase (U RS) Blue LED is ON Blue LED is OFF
Self-powering	Power dissipation nominal released state	P no		2,2		W	U _{RS} = 400V, @ relay is off;
S	nominal, ON-state	P n1		3,8		W	U _{RS} = 400V, @ relay is ON;
	Ambient Temperature Storage Temperature Relative humidity	T Amb	-10 +5 -25		+55 +45 +85 85	°C °C °C %	operating range standard accuracy range
	Contact rating: Making capability Breaking capacity - A.c. D.c. Breaking capacity, with via arc suppressor	out arc supp	pressor		8 2 50 3	A A mA A	250V, 50/60 Hz L/R < 20 ms; 220V d.c. L/R < 40 ms; 264V d.c.
	Insulation Test Voltage (50Hz; 1min.)				2,5	kVrms	between all d.c. separated circuits


DIMENSIONS, CONNECTION TO TERMINALS

Dimensions

Connection to terminals

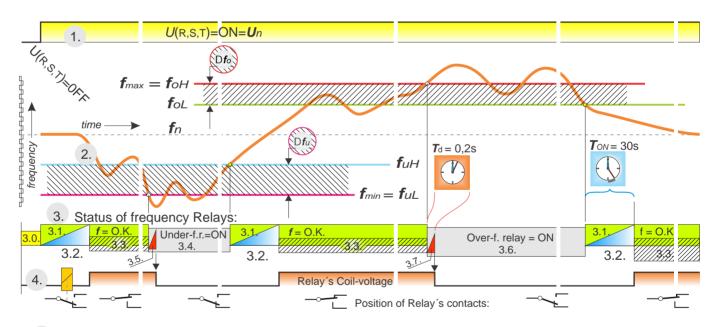

PHOTO GALLERY, DISCOVERING THE INSIDE VIEW

Opening the relay by unscrewing the plastic cover, take of the scale and unscrew 2 screws at the bottom of the Frequency board.

Terminal base unit: containing 10kV separation transformer, phase signal suppression and the relay with 2 change over output contacts

OPERATION

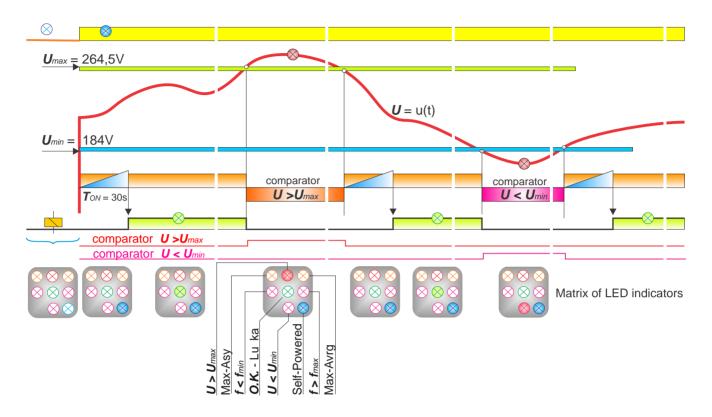
Operation

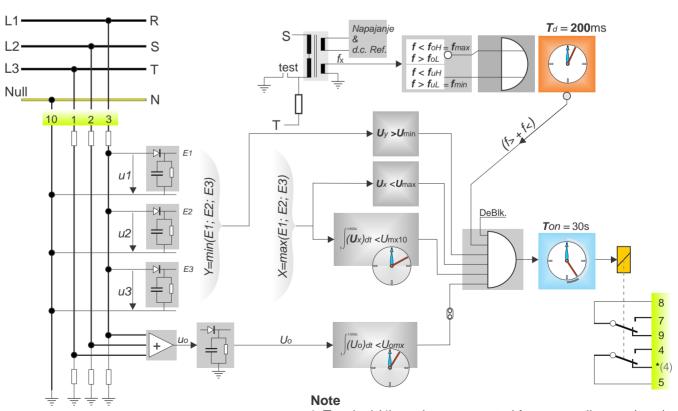

Supervision Relay F3W is monitoring frequency and 3 phase voltages. It is designed to connect and to disconnect a Private Power Plant to the Public Distribution network.

After a connection of F3W to the 3-phase Voltages, F3W compares all values and only, if they are all inside the prescribed limits for more than 30s, the F3W would permit the Private Plant to be connected to the Distribution Greed, by pick up of output relay.

During parallel operation of the solar plant with a public distribution network, the F3W has a protection function. If frequency or three phase voltage is out of set values, the output relay would drop out and disconnect the solar plant within 200ms.

Two statistic trend observations are analysing the Maximum Average Voltage and the Maximum Average Asymmetry of 3-phase voltages, over determined observation period. Either comparator of mentioned statistics would disconnect within the same 200ms drop out time.


Diagram of Operation of frequency relays (at all Voltage comparators inside preset limits)


- 1. Voltages (**U**_R, **U**_S, **U**_T) applied to terminals (R, S, T, N) of F3W;
- 2. Frequency-time function f = f(t), which flows thru both safety hysterese regions in a remarkable way:
 - + Hysteresis of under-f-relay: Dfu = fuH fuL. Higher and Lower limits (fuH, fuL), programmed by producer;
 - + Pick up frequency of U.F.R: *fmin*= *fuL*; Release frequency of U.F.R: *foH*;
 - + Hysteresis of over-f-relay: Dfo = foH foL. Higher and Lower limits (foH, foL), programmed by producer;
 - + Pick up frequency of O.F.R: $f_{max} = f_{uH}$; Release frequency of O.F.R: f_{oL} ;
- 3. Status of frequency Relays:
 - 3.0. Device F3W disconnected;
 - 3.1. f = O.K. state: Both U.F.R. and O.F.R. are released;
 - 3.2. Ton = 30s Count-down mode, triggered by O.K.-state of either under- or by over-frequency relay;
 - 3.3. Output relay pick-up state. Relay pull up after Ton delay runout;
 - 3.4. or 3.6. Active state of Under-f or Over-f-relay (f_u = ON or f_o = ON);
 - 3.5. or 3.7. T_d -Delay mode, triggered by (f_d = ON or f_o = ON); Ten sequent comparisons are requested;
- 4. Output Relay and contacts.

FUNCTIONAL BLOCK DIAGRAM

Diagram of Operation of Voltage relays (@ frequency inside limits of F3W relay)

Functional Block Diagram:

* Terminal (4) can be reconnected from normally open(=n.c), to normally closed contact, inside of the terminal base.

CONTENT

FREQUENCY - VOLTAGE SUPERVISION RELAY F3W

NOVELTIES, ORDERING CODE	1
APPLICATION, FUNCTIONS, FEATURES	2
SETTINGS AND INDICATIONS	3
TECHNICAL DATA	4
DIMENSIONS, CONNECTION TO TERMINALS	5
PHOTO GALLERY, DISCOVERING THE INSIDE VIEW	6
OPERATION	. 7
FUNCTIONAL BLOCK DIAGRAM	.8
CONTENT	9

Place and date of issue: Medvode, 24. 01. 2019 The producer reserves the right to modify data and design in the light of future progress.